
Security Assessment

Vemate
Jul 26th, 2022

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
VEM-01 : Centralization Risks in Vemate.sol

VEM-02 : Initial owner balance is the `_totalSupply`

VEM-03 : Missing Zero Address Validation

VEM-04 : Unused Return Value

VEM-05 : Missing Input Validation

VEM-06 : Function `setSwapTolerancePercent()` Allows For High Slippage

VEM-13 : Comparison to Boolean Constant

VEM-14 : Declaration Naming Convention

VEM-15 : Function Initializing State

VEM-16 : Shadowing Local Variable

VEM-17 : Too Many Digits

VEM-18 : Usage of `block.timestamp`

VEM-19 : Missing Emit Events

VEM-20 : Inconsistent Comment and Code

VEM-21 : Unnecessary `require` Statement

VEM-22 : Use `_msgSender()` from `Ownable`

VEM-23 : Inconsistency in `lockedBetweenSells` and `lockedBetweenBuys` Requirements

VEM-24 : `maxTxAmount` Initialized at `_totalSupply` Amount

VEM-25 : Function and Variable Naming Doesn't Match the Operating Environment

VEM-26 : Commented Out Code

VEM-27 : Antibot Mechanism

VEM-28 : Changes to Functionality in Contract Update

Optimizations
VEM-07 : Unused State Variable

VEM-08 : Variables That Could Be Declared as `constant`

VEM-09 : Contract Size Exceeds 24576 Bytes

VEM-10 : Only Update Necessary Storage Variables

Vemate Security AssessmentVemate Security Assessment

VEM-11 : `_approve()` Function Call Can Be Unchecked

VEM-12 : Update To Sender Balance Can Be Made `unchecked`

Appendix

Disclaimer

About

Vemate Security Assessment

Summary
This report has been prepared for Vemate to discover issues and vulnerabilities in the source code of the

Vemate project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Vemate Security Assessment

Overview

Project Summary

Project Name Vemate

Platform BSC

Language Solidity

Codebase

https://bscscan.com/address/0x1f1855A2CeE5FD8Af65446d2ac01FFe458d924b9

https://github.com/kausar75/vemate_token

https://bscscan.com/address/0xB33A63e3C5a7055c8E85FfE8eB55Cb9ac65109bD
https://github.com/abu-kausar/Vemate-Token/tree/Cerik-Resolved

Commit
c55fd618892a47ec40e875ceb0d1b67a444532d8

8b2e27187397031521f6bc07e3967db5dc00acf9

Audit Summary

Delivery Date Jul 26, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 2 0 0 0 2 0 0

Medium 0 0 0 0 0 0 0

Minor 4 0 0 0 0 0 4

Informational 16 0 0 0 0 0 16

Discussion 0 0 0 0 0 0 0

Vemate Security Assessment

https://bscscan.com/address/0x1f1855A2CeE5FD8Af65446d2ac01FFe458d924b9
https://github.com/kausar75/vemate_token
https://bscscan.com/address/0xB33A63e3C5a7055c8E85FfE8eB55Cb9ac65109bD
https://github.com/abu-kausar/Vemate-Token/tree/Cerik-Resolved
https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8
https://github.com/abu-kausar/Vemate-Token/tree/8b2e27187397031521f6bc07e3967db5dc00acf9

Audit Scope

ID File SHA256 Checksum

VEM Vemate.sol 7a4797d14c3c14c9cffc8a150bfc8f7b78440a58935778b29b8b3626dde763e9

Vemate Security Assessment

Findings

ID Title Category Severity Status

VEM-01 Centralization Risks In Vemate.sol
Centralization /

Privilege
Major Mitigated

VEM-02 Initial Owner Balance Is The _totalSupply
Centralization /

Privilege
Major Mitigated

VEM-03 Missing Zero Address Validation Volatile Code Minor Resolved

VEM-04 Unused Return Value Volatile Code Minor Resolved

VEM-05 Missing Input Validation Volatile Code Minor Resolved

VEM-06
Function setSwapTolerancePercent() Allows

For High Slippage
Volatile Code Minor Resolved

VEM-13 Comparison To Boolean Constant Coding Style Informational Resolved

VEM-14 Declaration Naming Convention Coding Style Informational Resolved

VEM-15 Function Initializing State Volatile Code Informational Resolved

VEM-16 Shadowing Local Variable Coding Style Informational Resolved

VEM-17 Too Many Digits Coding Style Informational Resolved

VEM-18 Usage Of block.timestamp
Language

Specific
Informational Resolved

VEM-19 Missing Emit Events Coding Style Informational Resolved

Vemate Security Assessment

22
Total Issues

Critical 0 (0.00%)

Major 2 (9.09%)

Medium 0 (0.00%)

Minor 4 (18.18%)

Informational 16 (72.73%)

Discussion 0 (0.00%)

ID Title Category Severity Status

VEM-20 Inconsistent Comment And Code Inconsistency Informational Resolved

VEM-21 Unnecessary require Statement Coding Style Informational Resolved

VEM-22 Use _msgSender() From Ownable Coding Style Informational Resolved

VEM-23
Inconsistency In lockedBetweenSells And

lockedBetweenBuys Requirements
Inconsistency Informational Resolved

VEM-24
maxTxAmount Initialized At _totalSupply

Amount
Volatile Code Informational Resolved

VEM-25
Function And Variable Naming Doesn't Match The

Operating Environment
Coding Style Informational Resolved

VEM-26 Commented Out Code Coding Style Informational Resolved

VEM-27 Antibot Mechanism Control Flow Informational Resolved

VEM-28 Changes To Functionality In Contract Update Coding Style Informational Resolved

Vemate Security Assessment

VEM-01 | Centralization Risks In Vemate.sol

Category Severity Location Status

Centralization /

Privilege
Major

Vemate.sol: 139, 701, 717, 728, 739, 750, 758, 769, 780, 791, 802, 813, 81

8, 823, 830, 837, 842, 848, 853, 858, 865, 871, 875
Mitigated

Description

In the contract Ownable the role _owner has authority over the functions shown in the diagram below.
Any

compromise to the _owner account may allow the hacker to take advantage of this authority and change

the address of _owner to another contract or user.

Authenticated Role Function Function Calls

_owner transferOwnership _transferOwnership

In the contract Vemate the role _owner has authority over the functions shown in the diagram below.
Any

compromise to the _owner account may allow the hacker to take advantage of this authority and

completely change features of this contract, such as adjusting fee amounts, draining the funds (in BNB and

the contract token) from the contract and sending them to their preferred address, adjusting timelock

settings, maliciously updating maxTxAmount , tokenPerBNB , or setMinTokenToSwapAndLiquify to

undesirable values. The attacker would also be able to change the router address, adjust the

swapSlippageTolerancePercent to be as high as 100%, and update the _isPrivileged status of any

address they want.

Vemate Security Assessment

Function

State Variables

Function Calls

Authenticated Role

Function

Function

Function State Variables

Function State Variables

Function

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function Calls

Function Calls

setRouterAddress

uniswapV2Pair
uniswapV2Router

IUniswapV2Factory

IUniswapV2Router02togglePauseSellingFee

withdrawResidualBNB

setMarketingFeePercent

toggleSwapAndLiquify

setCharityWallet

toggleAntiBot

setSwapTolerancePercent

setLockTimeBetweenBuys

setMinTokenToSwapAndLiquify

setCharityFeePercent

payable

fee

swapAndLiquifyEnabled

antiBot

swapSlippageTolerancePercent

lockedBetweenBuys

numTokensSellToAddToLiquidity

fee

Vemate Security Assessment

Function State Variables

Function

Function State Variables

Function

Function

Function State Variables

Function Function Calls

Function State Variables

Function State Variables

Function

Function

_owner

setDevFeePercent

togglePauseBuyingFee

updateTokenPrice

removePrivilegedWallet

setMarketingWallet

setMaxTxAmount

withdrawResidualToken

setLockTimeBetweenSells

setLpFeePercent

addPrivilegedWallet

setDevWallet

fee

tokenPerBNB

maxTxAmount

_transfer

lockedBetweenSells

fee

Vemate Security Assessment

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.
Indicatively, here are some feasible suggestions that would also

mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved. As such, the team

might consider adding back in the renounceOwnership() function in the Ownable contract.

Renounce the ownership and never claim back the privileged roles.

OR

Vemate Security Assessment

Remove the risky functionality.

Alleviation

[CertiK] : The client has taken several steps towards completing the short-term recommendation for this

finding at this time. The changes include:

2/3 multi-signature.

Multisignature Account: 0x7420bec08C03A9A436B143464009Ea6A43B518DD

Authorizing addresses:

0x1537a76331C72A8E43021604B3c633b5A896447a

0x462d99E11749628CafF5B16EcB0bA8815B62594d

0x30D035BdB889AA505e699e4DB8935Cbf55B7BA1C

Transaction transferring ownership to multisignature proxy:

0xd3b1e65d81859bc8f0084621e93275798f9eadd831764b28987f600d82164ed5

Medium post containing this information for the public: https://vemate.medium.com/passing-a-

certik-audit-insights-8e07b8ec4617

Additionally, to aid in transparency, the client has undergone KYC: KYC Certification

The team plans to add a time-lock and include the contract in a blog post. Once this is completed, the

finding will be updated to mitigated.

[CertiK] : In addition to multisig and medium post effort from vemate team, the timelock is also adopted.

The timelock is deployed at

https://bscscan.com/address/0x1666f214c6d0dbf8be35f5f67fd28bad7da5a482 and the ownership of the

vemate deployment at https://bscscan.com/address/0xB33A63e3C5a7055c8E85FfE8eB55Cb9ac65109bD

has been transferred into the timelock deployment.

Vemate Security Assessment

https://bscscan.com/address/0x7420bec08C03A9A436B143464009Ea6A43B518DD
https://bscscan.com/address/0x1537a76331C72A8E43021604B3c633b5A896447a
https://bscscan.com/address/0x462d99E11749628CafF5B16EcB0bA8815B62594d
https://bscscan.com/address/0x30D035BdB889AA505e699e4DB8935Cbf55B7BA1C
https://bscscan.com/tx/0xd3b1e65d81859bc8f0084621e93275798f9eadd831764b28987f600d82164ed5
https://vemate.medium.com/passing-a-certik-audit-insights-8e07b8ec4617
https://github.com/SpyWolfNetwork/KYCs/blob/main/june/KYC_Vemate_0x192C3E8D9f91bCD4a014CeAE5c5ED1535d198A7E.png
https://bscscan.com/address/0x1666f214c6d0dbf8be35f5f67fd28bad7da5a482
https://bscscan.com/address/0xB33A63e3C5a7055c8E85FfE8eB55Cb9ac65109bD

VEM-02 | Initial Owner Balance Is The _totalSupply

Category Severity Location Status

Centralization / Privilege Major Vemate.sol: 696~697 Mitigated

Description

Upon deployment of the contract, the _totalSupply for the contract token is held solely by the _owner of

the contract. This could be a centralization risk as the deployer can distribute tokens without obtaining the

consensus of the community.

Recommendation

We recommend the team be transparent regarding the initial token distribution process.

Alleviation

[Vemate] : We have resolved this issue by carrying out the following actions:

Vested full 10% Marketing wallet, with 15% to be released upon listing and then 7% monthly;

Vested full 9.5% Reserve for CEX listing wallet, with 20% to be released upon listing and then 7%

monthly with 10% in the last month;

Locked full 8% Team tokens for 12 months

Locked 35% Presale tokens, 20% Token Liquidity tokens as well as 1.1% from Staking, Referral,

Partnership and Airdrop wallet tokens until our planned Presale date. This was done via Pinklock.

Allocated 10% Private Sale tokens plus 1.34% from Staking, Referral, Partnership and Airdrop wallet

tokens to Private Sale users - this was allocated as per the selection made by the users -

vesting/staking to the Private sale Contract.

Please find the Private Sale Contract address here, where we have also locked and vested the

above mentioned tokens: 0x6C0B36E65026AA6B2DE96f2046Fe3BdDBF6a0e8b

Vemate Security Assessment

VEM-03 | Missing Zero Address Validation

Category Severity Location Status

Volatile Code Minor Vemate.sol: 872 Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not zero

addresses.

File: Vemate.sol (Line 872, Function Vemate.withdrawResidualBNB)

 payablepayable((newAddressnewAddress))..transfertransfer((addressaddress((thisthis))..balancebalance));;

newAddress is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-04 | Unused Return Value

Category Severity Location Status

Volatile Code Minor Vemate.sol: 1141~1148 Resolved

Description

The return value of an external call is not stored in a local or state variable.

File: Vemate.sol (Line 1141-1148, Function Vemate.addLiquidity)

 uniswapV2Router uniswapV2Router..addLiquidityETHaddLiquidityETH{{valuevalue:: ethAmount ethAmount}}((

 addressaddress((thisthis)),,

 tokenAmount tokenAmount,,

 minTokenAmount minTokenAmount,,

 minETHAmount minETHAmount,,

 addressaddress((thisthis)),,

 getCurrentTimegetCurrentTime(())

));;

Recommendation

We recommend checking or using the return values of all external function calls. You can additionally add

the return values into the event LiquidityAdded .

Alleviation

[CertiK] : The team removed the addLiquidityETH() function in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8, which also removes the deflationary mechanism of the

token. As such, there is no longer an unchecked return value.

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-05 | Missing Input Validation

Category Severity Location Status

Volatile Code Minor Vemate.sol: 842, 848, 865 Resolved

Description

For the functions setMaxTxAmount() , updateTokenPrice() , and setMinTokenToSwapAndLiquify() , there

is no validation check in place to verify that the input for updated variable meets an expected standard.

Since all three functions accept type uint256 , the input can be any number within this range, which could

make the contract behave unexpectedly. For instance, it is possible the numTokensSellToAddToLiquidity

could be set to 0, meaning a transfer of any amount causes swapAndLiquify() to be called. Additionally,

it's also possible to input a value for maxTxAmount that is greater than the _totalSupply value, which

would not make sense.

Recommendation

We recommend adding in a validation check that includes the absolute minimum and maximum bounds

the team expects to use for the updated inputs.

Alleviation

[CertiK] : The team heeded the advice and removed the updateTokenPrice() and setMaxTxAmount() in

the VemateToken.sol in the commit c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-06 | Function setSwapTolerancePercent() Allows For High Slippage

Category Severity Location Status

Volatile Code Minor Vemate.sol: 858~859 Resolved

Description

The function setSwapTolerancePercent() allows for the storage variable swapSlippageTolerancePercent

to be set to as high as 100%. If it is set to this maximum value, users could lose 100% of their expected

BNB output to slippage.

Recommendation

We recommend that the bounds for the input value newTolerancePercent be set to a stricter range to

avoid the scenario described above.

Alleviation

[CertiK] : The team heeded the advice and removed the setSwapTolerancePercent() in the

VemateToken.sol in the commit c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-13 | Comparison To Boolean Constant

Category Severity Location Status

Coding Style Informational Vemate.sol: 752, 759 Resolved

Description

Boolean constants can be used directly and do not need to be compared to true or false.

File: Vemate.sol (Line 752, Function Vemate.addPrivilegedWallet)

 requirerequire((_isPrivileged_isPrivileged[[newPrivilegedAddressnewPrivilegedAddress]] !=!= truetrue,, "already privileged""already privileged"));;

File: Vemate.sol (Line 759, Function Vemate.removePrivilegedWallet)

 requirerequire((_isPrivileged_isPrivileged[[prevPrivilegedAddressprevPrivilegedAddress]] !=!= falsefalse,, "not privileged address""not privileged address"));;

Recommendation

We recommend removing the equality to the boolean constant.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-14 | Declaration Naming Convention

Category Severity Location Status

Coding Style Informational Vemate.sol: 640 Resolved

Description

One or more declarations do not conform to the Solidity style guide with regards to its naming convention.

Particularly:

camelCase : Should be applied to function names, argument names, local and state variable names,

modifiers

UPPER_CASE : Should be applied to constant variables

CapWords : Should be applied to contract names, struct names, event names and enums

File: Vemate.sol (Line 640, Contract Vemate)

 uint8uint8 publicpublic constantconstant maxFeePercent maxFeePercent == 55;;

Constant variable maxFeePercent is not in UPPER_CASE .

Recommendation

We recommend adjusting those variable and function names to properly conform to Solidity's naming

convention.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions
https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-15 | Function Initializing State

Category Severity Location Status

Volatile Code Informational Vemate.sol: 649, 658, 659 Resolved

Description

State variables are inline initialized using either non-constant state variable or function calls that are not

pure/constant. Since inline initialization occurs before constructor call, some non-constant state variables

may not be initialized and non-constant functions may behave in an unexpected way.

File: Vemate.sol (Line 649, Contract Vemate)

 uint256uint256 privateprivate _totalSupply _totalSupply == 150000000150000000 ** 1010****_decimals_decimals;; // 150 million;// 150 million;

File: Vemate.sol (Line 658, Contract Vemate)

 uint256uint256 publicpublic maxTxAmount maxTxAmount == _totalSupply _totalSupply;;

File: Vemate.sol (Line 659, Contract Vemate)

 uint256uint256 publicpublic numTokensSellToAddToLiquidity numTokensSellToAddToLiquidity == 1000010000 ** 1010****_decimals_decimals;; // 10 Token// 10 Token

Recommendation

We recommend removing any inline initialization of state variables via non-constant state variables or non-

constant function calls. For these cases, it appears the problem could be resolved by making initializing

_decimals and _totalSupply as constants. Otherwise, if variables must be set upon contract

deployment, initialize them in the constructor, instead.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-16 | Shadowing Local Variable

Category Severity Location Status

Coding Style Informational Vemate.sol: 937, 1186 Resolved

Description

A local variable is shadowing another component defined elsewhere.

File: Vemate.sol (Line 1186, Function Vemate._approve)

 functionfunction _approve_approve((addressaddress owner owner,, addressaddress spender spender,, uint256uint256 amount amount)) internalinternal {{

Local variable owner shadows the function owner in Ownable .

File: Vemate.sol (Line 123, Contract Ownable)

 functionfunction ownerowner(()) publicpublic viewview virtual virtual returnsreturns ((addressaddress)) {{

File: Vemate.sol (Line 937, Function Vemate.allowance)

 functionfunction allowanceallowance((addressaddress owner owner,, addressaddress spender spender)) externalexternal override override viewview returnsreturns
((uint256uint256)) {{

Local variable owner shadows the function owner in Ownable .

File: Vemate.sol (Line 123, Contract Ownable)

 functionfunction ownerowner(()) publicpublic viewview virtual virtual returnsreturns ((addressaddress)) {{

Recommendation

We recommend removing or renaming the local variable that shadows another definition. For instance,

owner_ could be used.

Alleviation

Vemate Security Assessment

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-17 | Too Many Digits

Category Severity Location Status

Coding Style Informational Vemate.sol: 649 Resolved

Description

Literals with many digits are difficult to read and review.

File: Vemate.sol (Line 649, Function Vemate.slitherConstructorVariables)

 uint256uint256 privateprivate _totalSupply _totalSupply == 150000000150000000 ** 1010****_decimals_decimals;; // 150 million;// 150 million;

Recommendation

We advise the client to use the scientific notation to improve readability.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-18 | Usage Of block.timestamp

Category Severity Location Status

Language Specific Informational Vemate.sol: 1198~1199 Resolved

Description

block.timestamp is used for comparison, which can be risky since timestamp can be influenced by

miners. That means the miner creating the block can manipulate the block.timestamp , to some degree,

and change the outcome of the transaction.

File: Vemate.sol (Line 1198-1199, Function Vemate.checkSwapFrequency)

 requirerequire((currentTime currentTime -- lastSwapTime lastSwapTime >=>= lockedBetweenSells lockedBetweenSells,, "Lock time has not"Lock time has not
been released from last swap"been released from last swap"

));;

Recommendation

We recommend against relying on block.timestamp .

Reference: https://swcregistry.io/docs/SWC-116

Alleviation

[CertiK] : The team removed the function checkSwapFrequency() in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8.

Vemate Security Assessment

https://swcregistry.io/docs/SWC-116
https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-19 | Missing Emit Events

Category Severity Location Status

Coding Style Informational Vemate.sol: 871, 875, 1070 Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles

or when important updates are made to the contract.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles, or

when important updates are made to the contract, like receiving BNB.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-20 | Inconsistent Comment And Code

Category Severity Location Status

Inconsistency Informational Vemate.sol: 659 Resolved

Description

The comment in line 659 looks like it is saying that numTokensSellToAddToLiquidity should be 10, but

instead, this value is set to 10,000.

Recommendation

Please ensure the value is correctly set and update the comment as needed.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-21 | Unnecessary require Statement

Category Severity Location Status

Coding Style Informational Vemate.sol: 677 Resolved

Description

 requirerequire((ownerowner(()) !=!= addressaddress((00)),, "Owner must be set""Owner must be set"));;

The require code here is unnecessary since, upon construction, the owner is set to the address that

deploys the contract. It is not possible for address(0) to deploy a contract.

Recommendation

This line may be safely omitted.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-22 | Use _msgSender() From Ownable

Category Severity Location Status

Coding Style Informational Vemate.sol: 698 Resolved

Description

In the event Transfer , msg.sender is used rather than the inherited function _msgSender() .

Recommendation

We recommend using _msgSender() in place of msg.sender for consistency throughout the contract.

Consistency promotes readability in the contract.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-23 | Inconsistency In lockedBetweenSells And lockedBetweenBuys Requirements

Category Severity Location Status

Inconsistency Informational Vemate.sol: 656, 657, 824~825, 831 Resolved

Description

The storage variable lockedBetweenSells is initialized at 60, but can be updated with the function,

setLockTimeBetweenSells() . This function requires that the new input for lockedBetweenSells is no

more than 30.

Recommendation

While this is conceivable as a strategy at launch, please confirm this is the intention of the team. We

recommend reviewing the initialized value and bound on the new input and make any necessary changes if

this is an inconsistency error.

Alleviation

[CertiK] : The team has heeded the advice by reviewing the locking mechanism and has opted to remove

the mechanism and related variables from the contract.

Vemate Security Assessment

VEM-24 | maxTxAmount Initialized At _totalSupply Amount

Category Severity Location Status

Volatile Code Informational Vemate.sol: 658 Resolved

Description

The storage variable maxTxAmount is initialized inline to be equivalent to the _totalSupply of contract

tokens. Effectively, this means that at initialization, there is no bound on the number of tokens that can be

transferred in a single transaction.

Recommendation

If this is the intended effect, where any user can send any amount at launch start, there is no need to make

a change. However, if this is initalized at _totalSupply because the _owner of the contract intends to

move the supply from their contract balance, it does not seem necessary to initialize maxTxAmount equal to

_totalSupply , since the _owner is a privileged address and its transfers are not checked against

maxTxAmount anyway. The client team might consider initializing maxTxAmount at the value they intend to

update it with.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-25 | Function And Variable Naming Doesn't Match The Operating

Environment

Category Severity Location Status

Coding Style Informational Vemate.sol: 1106~1107, 1114, 1116, 1121, 1132, 1137, 1145, 1149 Resolved

Description

The Vemate contract switches between referencing ETH and BNB within multiple functions, variables, and

comments. The following function declared within the Vemate contract includes references to ETH:

swapTokensForEth()

The following local variables include references to ETH:

ethAmount

minETHAmount

Recommendation

We recommend uniformly making references to BNB instead of ETH for any functions, variables, or

comments declared within this contract, including but not limited to those listed in the description.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-26 | Commented Out Code

Category Severity Location Status

Coding Style Informational Vemate.sol: 1133~1134 Resolved

Description

The commented out code is not relevant to the function, addLiquidity() .

Recommendation

We recommend removing the commented out line of code.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-27 | Antibot Mechanism

Category Severity Location Status

Control Flow Informational Vemate.sol: 1194~1195 Resolved

Description

The function checkSwapFrequency() only checks the address of the msg.sender , which can be a contract

or an externally owned account. It is easy for a user to set up interactions between multiple contracts and

bypass this anti-bot feature by initiating from one contract, using that contract to call a separate contract

which then interacts with the Vemate contract successfully within the time-lock since it does not have the

same address. With this in mind, the checkSwapFrequency() function may not have its intended effect.

Recommendation

We encourage the team to consider this possibility and decide whether to make changes to the function.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-28 | Changes To Functionality In Contract Update

Category Severity Location Status

Coding Style Informational Vemate.sol: 612~613 Resolved

Description

In commit c55fd618892a47ec40e875ceb0d1b67a444532d8, significant changes have been made to the

functionality of file Vemate.sol outside the recommendations found in the audit. Below is a brief list of

notable changes made from the original file.

In the struct FeePercent , the following uint8 values have been removed: lp , dev , and marketing .

The uint8 value treasury has been added.

The struct outlined above initially had the following fee percent distribution: lp was 2, dev was 1,

marketing was 1, and charity was 1. In the update, treasury is now 4 while charity is 1.

The symbol of the token has been changed from V to VMT .

A privileged-status function setAutomatedMarketMakerPair() was added. In this function, the

owner of the contract can set a new pair address for use in determining fees on transfers

The internal function _transfer() has been altered. The function call to swapAndLiquify() only

occurs on token sells.

The function swapAndLiquify() has been altered. Most notably, the calculation of fees differs

because there is no longer a portion sent to addLiquidity() . Instead, the function now takes the

entire contract token balance as the amount to swap, rather than the previous threshold amount

numTokensSellToAddToLiquidity . This amount of tokens is swapped for BNB and the entire amount

of BNB in the contract is divided into fees, 80% going to treasury address and 20% going to

charity address.

The addLiquidity() function has been removed from the contract. This contract no longer has an

automated liquidity acquisition feature.

Recommendation

Consider revisit the contract to make sure the changes aligning with the original design.

Alleviation

[CertiK]: The Vemate team confirms that all changes listed above are intentional and align with the design

of the token.

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

Optimizations

ID Title Category Severity Status

VEM-07 Unused State Variable Gas Optimization Optimization Resolved

VEM-08
Variables That Could Be Declared As

constant
Gas Optimization Optimization Resolved

VEM-09 Contract Size Exceeds 24576 Bytes
Compiler Error, Gas

Optimization
Optimization Resolved

VEM-10 Only Update Necessary Storage Variables Gas Optimization Optimization Resolved

VEM-11
_approve() Function Call Can Be

Unchecked
Gas Optimization Optimization Resolved

VEM-12
Update To Sender Balance Can Be Made

unchecked
Gas Optimization Optimization Resolved

Vemate Security Assessment

VEM-07 | Unused State Variable

Category Severity Location Status

Gas Optimization Optimization Vemate.sol: 645 Resolved

Description

The following state variable is never used in the codebase.

Variable blockTimestampLast in Vemate is never used in Vemate .

File: Vemate.sol (Line 645, Contract Vemate)

 uint32uint32 privateprivate blockTimestampLast blockTimestampLast;;

Recommendation

We advise removing the unused variables.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-08 | Variables That Could Be Declared As constant

Category Severity Location Status

Gas Optimization Optimization Vemate.sol: 635, 636, 639, 649 Resolved

Description

The linked variables could be declared as constant since these state variables are never modified.

Recommendation

We recommend to declare these variables as constant .

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-09 | Contract Size Exceeds 24576 Bytes

Category Severity Location Status

Compiler Error, Gas Optimization Optimization Vemate.sol: 612 Resolved

Description

Vemate contract code size exceeds 24576 bytes, so the contract may not be deployable on the mainnet.

Recommendation

Consider enabling the optimizer (with a low "runs" value), turning off revert strings, or using libraries.

Vemate Security Assessment

VEM-10 | Only Update Necessary Storage Variables

Category Severity Location Status

Gas Optimization Optimization Vemate.sol: 774~775, 785~786, 796~797, 807~808 Resolved

Description

For each of the functions, setLpFeePercent , setDevFeePercent , setMarketingFeePercent , and

setCharityFeePercent , the whole storage variable fee is updated during each execution of the functions,

when only one of the objects (fee.lp , fee.dev , fee.marketing , or fee.charity) is actually being

changed during the function call. Storage variables are expensive to update, and should be minimized

whenever possible.

Recommendation

To minimize gas costs, we recommend only updating the necessary storage variables.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-11 | _approve() Function Call Can Be Unchecked

Category Severity Location Status

Gas Optimization Optimization Vemate.sol: 970~971, 1009 Resolved

Description

In line 969, the _currentAllowance is confirmed to be at least as large as the input amount through the

require check. Hence, the SafeMath library inherent to the solidity compiler version, which protects

against underflows and overflows, is not necessary here.

Similarly, in line 1008, _currentAllowance is confirmed to be at least as large as the subtractedValue .

Recommendation

The _approve() function call after each require line can be safely declared inside the body of

unchecked{} .

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

VEM-12 | Update To Sender Balance Can Be Made unchecked

Category Severity Location Status

Gas Optimization Optimization Vemate.sol: 1168~1169 Resolved

Description

Since there was a check that the input amount for this function does not exceed _balances[sender] in

the internal function _transfer() , the update to _balances[sender] can be safely declared inside

unchecked{} . The difference, _balances[sender] - amount will not underflow, and this will optimize gas

savings.

Recommendation

We recommend writing the aforementioned line in an unchecked{} block to temporarily disable SafeMath .

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the VemateToken.sol in the commit

c55fd618892a47ec40e875ceb0d1b67a444532d8

Vemate Security Assessment

https://github.com/kausar75/vemate_token/tree/c55fd618892a47ec40e875ceb0d1b67a444532d8

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code,

such as a constructor assignment imposing different require statements on the input variables than a setter

function.

Vemate Security Assessment

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Vemate Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Vemate Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Vemate Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Vemate Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Vemate Security Assessment

